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Material Analysis of Failed Cold-Drawn Billet 

S.B. Smith, E. Troiano, and M. Miller 

1. Abstract 
In May 2008, a substrate failure occurred while attempting to explosively clad a TalOW liner to the 
inner diameter of a cold-drawn steel tube. Previous cladding operations, using condemned 25mm M242 
gun barrels of forged steel, were repeatedly successful. A failure investigation was performed to 
determine causes for the unexpected fiacture of the cold-drawn tube. 

The failure of the substrate was investigated with a number of materials forensic techniques including 
fiactography, metallography, chemical analysis, mechanical properties testing, etc. 

The investigation revealed the extremely low toughness of the cold-drawn material when compared to 
the forged material. The poor performance of the material was exacerbated by welds applied to the 
substrate during preparations for the bonding process. 

2. Background 
The American defense community faces a significant challenge as we develop the next generation 
cannons for FCS. The requirement for increased range, muzzle velocity, and penetration capability 
necessitates the development of propellants with increasing energy and flame temperatures. These 
advanced propellants increase the wear and erosion on medium caliber gun systems. Both current and 
future Army weapon systems that employ medium caliber cannons will benefit from longer barrel life. 
In all systems, greater lethality can be achieved with higher-performance propellants. As stated above, 
these propellants are generally associated with higher flame temperatures and greater erosivity. As an 
example, the M919 ammunition currently fielded with the M242 cannon erodes the barrel to 
condemnation in as little as 5000 cartridges though the current requirement is 10000 cartridges, 
minimum. Introduction of higher performance ammunition into this system results in barrel wear rates 
not acceptable to the User. Other medium caliber weapon systems including FCS-specific platforms will 
exhibit similar barrel wear properties. 

Through numerous government firing tests including the fring of two 25mm M242 Bushmaster tests in 
2001, the use of explosive bonding of tantalum liners in medium caliber barrels has been found to be 
effective in reducing the wear and erosion of the barrel. Explosive bonding (Figure 1) has been initially 
demonstrated to produce well-adhered, environmentally-friendly coatings. It is considered 



environmentally-friendly in that there is no hexavalent chromium waste stream as generated with the 
current chromium plating. 

Detonation 
Velocity, V, 

- 
iubstrate (Gun Barrel) 

Figure 1 : Explosive Bonding Schematic 

The 25mm tubes, from which the explosively bonded liners were deposited onto, are traditionally 
manufactured from forged D6AC steel or cold-rolled D6AC steel as per ASTM 643 1. [ARDEC 
Drawing #12524509, Barrel, 25mm, Chrome Barrel] Recently, when explosively bonding a Ta-IOW 
liner from a cold-rolled steel tube - the process suffered a catastrophic failure when the steel 
significantly fractured during the explosive bondmg process. Previous cladding operations, using 
condemned 25mm M242 gun barrels of forged steel, were repeatedly successful. An investigation was 
initiated to determine causes for the unexpected fracture of the cold-drawn tube. 

Samples of material were sent to Ben& Laboratories for analysis. Material samples included sections of 
the failed tube (CD-001, CD-F1, CD-F2), un-bonded cold-drawn material (CD-002, CD-B), as-received 
M242 sections (F-M242), and bonded M242 sections (F-M242C). Investigations included alloy 
composition, phase and grain size analysis, hardness testing, fractography, and mechanical property 
testing. 

3. DatalObservations 
3.1 .Alloy composition. 

Material samples of the CD-001, CD-002, CD-B, and F-M242C substrate steels were drilled from mid- 
wall of the sample sections. These material samples were tested for carbon and sulfur with a Leco C-S 
Determinator thermal analyzer. Additional alloying elements were tested via Perkin-Elmer inductively 
coupled plasma induced atomic emission spectroscope (ICP-AES). The material samples were 
compared to the SAE AMS-643 1 M Steel, Bars, Forgings, and Tubing, 1.05Cr - 0.55Ni - 1. OMo - 0.1 I V 
(0.45 - 0.50C), Vacuum Consumable Electrode Remelted standard. This standard is called out on the 
M242 drawing as D6AC steel. 



All the samples tested were within error of the standard. 

AMS 6431 M (D6AC Low-Carbon Steel) 
CIS Tested via Leco Thermal Analyzer, Additional Elements Tested via ICP-AES 

Composition (Weight-Percent) 

Figure 2: Alloy composition results. 

3.2. Microstructure and hardness testing. 
Samples of CD-001, CD-002, CD-B, and F-M242 were sectioned, metallographically mounted, polished 
and etched to reveal the microstructure. Rockwell hardness values were also obtained fkom the 
metallographic samples. 

All samples showed tempered martensite. The cold-rolled material showed a slightly courser structure, 
with wider, more dispersed platelets, compared to the forged material. The cold rolled samples also 
showed a larger grain size. The cold rolled material showed ASTM grain size 5 to 7, while the forged 
material exhibited a smaller ASTM grain size of 7 to 8. 

The slightly courser grain size and structure of the cold rolled material would suggest a slightly lower 
strength than the forged material. However, the slight degree of difference in the structure of the two 
materials would not suggest drastically difference performance, as seen in the cladding process. 

The Rockwell harness C-scale values of all of the samples averaged 36. Some of the hardness values 
were below the 36 HRc minimum prescribed in the drawing. The forged material also showed hardness 
values at the extreme low end of the specification, suggesting hardness did not play a roll in the failure. 



Sample I CD-001 CD-002 I CD-B F-M242 
7-8 1 
36.6 

Drawing specification HR, 36 to 42. 

Figure 3: Microstructure and hardness testing. Steel etched with 2% nital. 

3.3. Fractography. 
Two samples of the failed tube were shipped to Ben&, CD-F1 and CD-F2. The fracture faces of the 
samples were analyzed with optical microscopy for clues to the failure mode. 

Sample CD-Fl appears to have come from mid-axis, all sides showed fracture. The failure of this 
sample originated at the ID at one axial end. The structure of the fracture surface suggests brittle, 
single-cycle, rapid overload. 

Samples CD-F2 was discovered approximately one week after the failure event, exposed to the 
elements. After receipt at Ben&, the sample was subjected to cleaning with a commercial rust remover 
(Evapo-Rust). CD-F2 is from the end of the tube, one side of the sample was a machined surface. This 
tube end is where the cladding explosion was initiated. The structure of the fracture surface also 
suggests brittle, single-cycle, rapid overload. The failure of this sample originated at a number of weld 
points on the OD and machined surface. 

The fractography suggest that the failure initiated at the welds on the end wall and OD of the substrate. 
Similar welds were used previously during successful bonding of the condemned, forged, tube-material. 
Although the failure of the cold-formed barrel initiated at the weld-points, similar welding had not 
caused failure in previous tests, suggesting additional unique characteristics of the cold-drawn material 
influenced the failure. 



CD-F1 
- Single cycle overloacl 
- Failure initiated at ID 
- Secondary axial cracks notedl 

CD-F2 
- Single cycle overload 
- Failure initiated at welds 

Figure 4: Fractography. 

3.4. Charpy testing. 
Charpy V-notch impact energy samples were machined fiom three cold-drawn samples (CD-001, CD- 
002, CD-B) and two forged samples (F-M242, F-M242C). The samples were removed in the C-R 
orientation and tested at -40 deg-C. 

The three cold-drawn samples, with a 9.0 it-lb average / 2.18 standard deviation, showed half the 
absorbed impact energy of the two forged samples, with a 18.5 ft-lb average / 4.24 standard deviation. 

Figure 5: Charpy impact energy data. 



3.5. Tensile testing. 
Tensile test specimens were machined from three cold-drawn samples (CD-001, CD-002, CD-B) and 
two forged samples (F-M242, F-M242C). The samples were removed in the C-R orientation, as per 
ASTM E399, and tested at room temperature, 23 deg-C. The F-M242C sample failed outside the gauge 
length, and the data generated during testing is not included in this report. 

When compared to the forged material sample, the cold-drawn material showed slightly lower yield 
strength, percent reduction in area, and percent elongation. It also showed a slightly higher ultimate 
tensile strength. 

Tensile Test 

Tests performed at room temp (23 deg-C) 

Figure 6: Tensile test data. 

3.6. Fracture toughness testing. 
Tensile test specimens were machined from three cold-drawn samples (CD-001, CD-002, CD-B) and 
two forged samples (F-M242, F-M242C). The samples were removed in the C-R orientation and tested 
at room temperature, 23 deg-C. 

The cold-drawn material, with an average KIC value of 67 ksi-in" / 18.6 standard deviation, showed 
much less toughness than the forged material, with an average Klc value of 184 ksi-in" / 5.7 standard 
deviation. The load-displacement curve in Figure 6 is particularly telling, as by definition the toughness 
is the area under the curve. During testing, each of the cold rolled samples resulted in a rapid running 
crack event while the forged material failed in a controlled, predictable fashion. 
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Figure 7: Fracture toughness data. 



The alloy constituents, microstructure, and hardness of the cold-drawn and forged material 
matched the specifications of the 25mm M242 barrel drawing. 
Fractography suggests the failure initiated at spot weld points on the end wall and OD of the 
substrate. Due to the presence of these weld points on previously successful forged barrel 
claddings, the welds cannot be considered the root cause of failure. However, the weld points 
did appear to exacerbate the poor performance of the cold-drawn substrate. 
Mechanical testing of the material, particularly fracture toughness and charpy impact energy, has 
shown that the cold-drawn material has very low toughness when compared to the alternate 
forged material. The low toughness cold-drawn substrate is unable to effectively contain the 
high dynamic stresses generated during the explosive bonding process. 
To prevent additional failures during cladding, a minimum fracture toughness value needs to be 
established. This will allow rather straight-forward mechanical testing of candidate substrate 
material prior to explosive bonding. A minimum call out according to AMS 643 1 is 67 ksi-in'" 
at room temperature. This investigation suggests that the 67 ksi-in'" value is not high enough to 
ensure the substrate will survive the explosive bonding process intact and unaltered. 
A database of fracture toughness values, particularly in relation to Charpy impact energies, is 
also recommended. This will enable the inclusion of additional mechanical properties 
requirements in the barrel drawing, beyond the current hardness requirement. 
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